Supervised Descriptive Rule Discovery: A Unifying Survey of Contrast Set, Emerging Pattern and Subgroup Mining

نویسندگان

  • Petra Kralj Novak
  • Nada Lavrac
  • Geoffrey I. Webb
چکیده

This paper gives a survey of contrast set mining (CSM), emerging pattern mining (EPM), and subgroup discovery (SD) in a unifying framework named supervised descriptive rule discovery. While all these research areas aim at discovering patterns in the form of rules induced from labeled data, they use different terminology and task definitions, claim to have different goals, claim to use different rule learning heuristics, and use different means for selecting subsets of induced patterns. This paper contributes a novel understanding of these subareas of data mining by presenting a unified terminology, by explaining the apparent differences between the learning tasks as variants of a unique supervised descriptive rule discovery task and by exploring the apparent differences between the approaches. It also shows that various rule learning heuristics used in CSM, EPM and SD algorithms all aim at optimizing a trade off between rule coverage and precision. The commonalities (and differences) between the approaches are showcased on a selection of best known variants of CSM, EPM and SD algorithms. The paper also provides a critical survey of existing supervised descriptive rule discovery visualization methods.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Secure Top-k Subgroup Discovery

Supervised descriptive rule discovery techniques like subgroup discovery are quite popular in applications like fraud detection or clinical studies. Compared with other descriptive techniques, like classical support/confidence association rules, subgroup discovery has the advantage that it comes up with only the top-k patterns, and that it makes use of a quality function that avoids patterns un...

متن کامل

Secure Distributed Subgroup Discovery in Horizontally Partitioned Data

Supervised descriptive rule discovery techniques like subgroup discovery are quite popular in applications like fraud detection or clinical studies. Compared with other descriptive techniques, like classical support/confidence association rules, subgroup discovery has the advantage that it comes up with only the top-k patterns, and that it makes use of a quality function that avoids patterns un...

متن کامل

Rule Evaluation Measures: A Unifying View

Numerous measures are used for performance evaluation in machine learning. In predictive knowledge discovery, the most frequently used measure is classification accuracy. With new tasks being addressed in knowledge discovery, new measures appear. In descriptive knowledge discovery, where induced rules are not primarily intended for classification, new measures used are novelty in clausal and su...

متن کامل

Distributed Subgroup Mining

Subgroup discovery is a popular form of supervised rule learning, applicable to descriptive and predictive tasks. In this work we study two natural extensions of classical subgroup discovery to distributed settings. In the first variant the goal is to efficiently identify global subgroups, i.e. the rules an analysis would yield after collecting all the data at a single central database. In cont...

متن کامل

Overview on evolutionary subgroup discovery: analysis of the suitability and potential of the search performed by evolutionary algorithms

Subgroup discovery (SD) is a descriptive data mining technique using supervised learning. In this article, we review the use of evolutionary algorithms (EAs) for SD. In particular, we will focus on the suitability and potential of the search performed by EAs in the development of SD algorithms. Future directions in the use of EAs for SD are also presented in order to show the advantages and ben...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of Machine Learning Research

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2009